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Abstract
I/O performance remains a weakness of parallel com-

puting systems today. While this weakness is partly at-
tributed to rapid advances in other system components, I/O
interfaces available to programmers and the I/O methods
supported by file systems have traditionally not matched
efficiently with the types of I/O operations that scientific ap-
plications perform, particularly noncontiguous accesses.
The MPI-IO interface allows for rich descriptions of the
I/O patterns desired for scientific applications and imple-
mentations such as ROMIO have taken advantage of this
ability while remaining limited by underlying file system
methods.
A method of noncontiguous data access, list I/O, was

recently implemented in the Parallel Virtual File System
(PVFS). We implement support for this interface in the
ROMIO MPI-IO implementation. Through a suite of non-
contiguous I/O tests we compared ROMIO list I/O to cur-
rent methods of ROMIO noncontiguous access and found
that the list I/O interface provides performance benefits in
many noncontiguous cases.

1. Introduction
It has been known for some time that scientific appli-

cations tend to access files in a noncontiguous manner
[13, 2, 7]. Accordingly, a number of I/O optimizations,
in particular data sieving and two phase I/O, were devel-
oped to address noncontiguous access patterns in situations
where only contiguous I/O operations were available [8].
With the introduction of MPI-IO, a standard interface for
I/O better suited to scientific applications was made avail-
able [17]. These same optimizations were implemented in
the ROMIO MPI-IO implementation, which has become
the most popular MPI-IO implementation to date [18].
In [19], Thakur et al. noted that the POSIX I/O interface

[10] available for accessing most file systems was not an
ideal interface for addressing noncontigous I/O on parallel
file systems and proposed an interface for describing non-
contiguous reiogns in memory and file that would serve as
a flexible API for noncontiguous I/O to a parallel file sys-
tem. The goal of this interface was to provide the MPI-IO

implementation with an efficient means of noncontiguous
I/O. In [6], Ching et al. implemented support for this API,
denoted list I/O, in the Parallel Virtual File System (PVFS)
[4].
This work describes how we leverage this capability

through the ROMIOMPI-IO implementation and compares
it to the other access methods available through ROMIO.
By enhancing ROMIO to use list I/O, we provide the
performance benefits of this new feature to applications
without changing how the application itself performs I/O.
In Section 2 we describe the list I/O interface and how
ROMIO can use this interface to its advantage. In Sec-
tion 3 we compare the ROMIO list I/O approach with
previous ROMIO I/O methods. In Section 4 we observe
the performance implications of list I/O support for three
applications: a tile reader application, a ROMIO three-
dimensional block test, and a simulation of FLASH I/O
checkpointing. In Section 5 we discuss related work in the
area of noncontiguous I/O. In Section 6 we conclude our
work and point to areas of future study.

2. List I/O
The list I/O interface proposed in [19] by Thakur et al. is

an I/O interface for describing noncontiguous data in mem-
ory and in file. It is a simple interface that can describe
complex noncontiguous data access in a single function
call. We present a visual example of the list I/O interface
in Figure 1. Below is the list I/O interface proposed:

list_io_read(int mem_list_count,
char *mem_offsets[],
char mem_lengths[],
int file_list_count,
int file_offsets[],
int file_lengths[])

(list io write has the same parameters)

mem list count is the total number of contiguous
memory regions involved in the data access, which
is also the length of the arrays mem offsets[] and
mem lengths[].



Figure 1: Example list I/O write. Since only contiguous
regions can be described using the POSIX read/write inter-
faces, four I/O calls would be required instead of one list
I/O write.

mem offsets[] is an array of pointers that each point to
the beginning of a contiguous memory region.

mem lengths[] is an array of lengths that match ev-
ery start of a contiguous memory region with a corre-
sponding memory length.

file list count has the same functionality for a file as
mem list count does for memory. It is the total num-
ber of contiguous file regions as well as the length of
the arrays file offsets[] and file lengths[].

file offsets[] is an array of offsets that each point to the
beginning of a contiguous file region.

file lengths[] is the lengths of the file regions that
correspond to the file offsets. The sum of the
mem lengths[] and file lengths[] must be equivalent.

A naive implemention of list I/O would use the POSIX
read/write calls and would provide no performance advan-
tage over those calls. However, building support directly
into the parallel file system to handle such a call provides
the file system with much needed noncontigous I/O capa-
bilities. An example of a high performance implementation
of list I/O was added to the Parallel Virtual File System
(PVFS) and will be discussed further in Section 2.1.
Traditional methods of noncontiguous data access in-

clude multiple contiguous I/O calls or the use of data siev-
ing. Multiple contiguous I/O builds on traditional POSIX
I/O calls (read/write) to perform noncontiguous access.
Data sieving is the I/O optimization of reading a large con-
tiguous amount of data from file into a memory buffer,
again building on the POSIX API, and performing all non-
contiguous data movement using the memory buffer.
Using list I/O for noncontiguous data access offers sev-

eral advantages over traditional methods. Multiple contigu-
ous I/O calls have a large overhead with respect to the num-
ber of I/O calls that must be issued to the underlying file
system when describing complex noncontiguous I/O access
patterns. List I/O can perform a noncontiguous I/O data
access with fewer I/O calls with an optimized implementa-
tion. Data sieving requires a read-modify-write set of oper-
ations and file synchronization (which often has prohibitive
overhead) in noncontiguous writes. Some file systems do
not provide synchronization and therefore cannot support
data sieving in the noncontiguous write case. Also, unlike

other noncontiguous methods, data sieving requires mem-
ory for the data sieving buffer. List I/O provides a simple
interface that can provide high performance I/O for reading
and writing data in scientific workloads.
Section 2.1 describes PVFS and its implementation of

list I/O. Section 2.2 discusses ROMIO, the MPI-IO im-
plementation developed at Argonne National Laboratory,
and how ROMIO uses the list I/O interface in its Abstract-
Device implementation for I/O (ADIO) implementation.

2.1 Parallel Virtual File System

The Parallel Virtual File System (PVFS) is a client-
server parallel file system that provides parallel data access
with a clusterwide consistent name space. PVFS addresses
the need for high performance I/O on low-cost Linux clus-
ters. ROMIO, the MPI-IO implementation from Argonne
National Laboratory, has native support for PVFS. Addi-
tional information on PVFS can be found in [4], and a per-
formance evaluation on a Linux cluster can be found in [1].
Ching et al. created support for list I/O in PVFS [6].

The pvfs read list and pvfs write list func-
tions take list I/O parameters and perform the noncontigu-
ous access as a single PVFS operation. The maximum
number of file offset-length pairs serviced by a single I/O
request is capped at 128 file regions to limit request sizes
across the network, and the implementation will transpar-
ently divide larger collections into multiple requests. The
reduction of the number of I/O requests over the tradi-
tional multiple contiguous I/O method leads to higher per-
formance data access in several I/O intensive benchmarks.
The addition of list I/O to the PVFS client library adds a
high performance method of noncontiguous data access;
however, few users directly use the PVFS client library for
I/O. It is important that support through a common API be
established if this feature is to be used; ROMIO is the ob-
vious candidate for providing this support.

2.2 ROMIO MPI-IO Implementation

ROMIO is an implementation of the MPI-2 I/O speci-
fication built on top of the MPI-1 message-passing oper-
ations and ADIO, a small set of basic functions for per-
forming I/O [18, 16]. ROMIO can support any file system
by implementing the ADIO functions with the interfaces of
the file system. Since each file system can implement the
ADIO functions using its own file-system library, ROMIO
can take full advantage of most file-system specific opti-
mizations. ROMIO already has support for many file sys-
tems including HP’s HFS, NFS, Intel’s PFS, SGI’s XFS,
Unix FS, and PVFS. It is used for I/O in many MPI imple-
mentations, including MPICH and LAM/MPI.

MPI_File_open(MPI_COMM_WORLD,
‘‘/pvfs/test.txt’’,
MPI_MODE_RDWR,
MPI_INFO_NULL, &fh);

etype = MPI_INT;
MPI_Type_vector(2, 2, 3,

MPI_INT,
&filetype);

MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, etype,

filetype, datarep,
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Figure 2: File datatypes are replicated and read into mem-
ory until the read call has accessed that correct amount of
data.

MPI_INFO_NULL);
MPI_File_read(fh, buf, 8,

MPI_INT, status,
ierror);

MPI_File_close(&fh);

This example MPI-IO C code, as graphically depicted
in Figure 2, performs a collective open of a file with
MPI File open. MPI Type calls are used to create both
the memory datatype and the file datatype. Performing the
read puts the first two integers from file into the memory
buffer, then puts the fourth and fifth integers from file into
the memory buffer, continuing the vector pattern of the file
datatype until eight MPI INTS are contiguously located in
the buffer buf.
To take advantage of PVFS’s list I/O in the ROMIO

MPI-IO implementation, we implemented the new ADIO
read and write functions using pvfs read list and
pvfs write list. PVFS list I/O, as described in Sec-
tion 2, requires several parameters, including offset-length
pairs for memory locations, offset-length pairs for file lo-
cations, and their respective counts. Our new ADIO calls
convert MPI types into their respective contiguous regions
and create the arrays to pass to the list I/O calls. This con-
version process, or flattening, is accomplished by decoding
the types using the MPI calls MPI Type get envelope
and MPI Type get contents. Figure 3 gives an exam-
ple of this process. The implementation for generating list
I/O calls in ROMIO breaks up the file regions into collec-
tions of 128 to match the maximum size allowable by the
PVFS list I/O implementation. Given a large number of
noncontiguous accesses, ROMIO will fill the offset-length
arrays, perform the required I/O and repeat the sequence
until all the noncontiguous regions have been satisfied.

3 Comparison of ROMIO Implementations
In this section we describe the other I/O methods im-

plemented in ROMIO. Section 3.1 discusses the ROMIO
implementation over POSIX read/write calls, which we call
ROMIO POSIX I/O. Section 3.2 covers the data sieving im-
plementation in ROMIO, which we call ROMIO data siev-
ing I/O. Section 3.3 explains the two phase collective im-
plementation, which we call ROMIO collective I/O.

3.1 ROMIO POSIX I/O
In ROMIO POSIX I/O, all noncontiguous data access is

reduced to multiple POSIX [10] read/write calls on con-
tiguous file regions. This implementation is generally

Figure 3: Example flattening of a file datatype. File
datatypes are converted into lists of file offsets and lengths
in order to generate the necessary parameters to use the list
I/O interface.

turned off in favor of ROMIO data sieving I/O in all read
cases. For noncontiguous writes when the underlying file
system does not support file locking, ROMIO data sieving
I/O will not work properly and ROMIO POSIX I/O must
be used in order to get semantically consistent results.

3.2 ROMIO Data Sieving I/O
ROMIO data sieving I/O uses a data sieving [3] method

to reduce the number of I/O calls to the underlying file
system. Data sieving works by reading large contiguous
chunks of file data at a time into a data sieving buffer in
memory and then extracting the desired regions. In the
case of noncontiguous writes, large contiguous chunks of
file data are read into memory, new data is written to the
data sieving buffer, and finally the data sieving buffer is
contiguously written back to the file. This process can re-
duce the number of I/O calls to the file system by perform-
ing data movement in the data sieving buffer instead of at
the disk. We tested ROMIO data sieving I/O with a data
sieving buffer of 4 MBytes, the default size.
In order to use ROMIO data sieving I/O in noncon-

tiguous writes, the file system must support file locking to
maintain correctness. However, since PVFS does not sup-
port file locking, ROMIO invokes the ROMIO POSIX I/O
method instead.

3.3 ROMIO Collective I/O
ROMIO collective I/O is an optimization for aggrega-

tion of reads/writes using the two phase I/O method de-
veloped in [8]. Other examples of collective I/O are disk
directed I/O [12] and server directed I/O [15]. Two phase
I/O works by assigning file regions to a specified number of
processors who will handle I/O on behalf of all processes.
In the ROMIO implementation these regions are dynami-
cally calculated based on the extent of the regions being
accessed by all processes, with the entire region being split
into evenly sized contiguous sub-regions. Before a collec-
tive read operation, the processors designate file partitions
and pass file offset-length pairs to assigned I/O processors.
The first phase of the two-phase method is parallel data
sieving reads of the aggregate file region by the I/O proces-
sors and the second phase is an exchange of data between
the I/O processors and the processors who had file regions
in the I/O processor’s file partition. In a collective write
operation, the first phase of the two-phase method is an ex-
change of data from the relevant processors to the assigned
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Table 1: I/O Characteristics of the Tile Reader Benchmark
Desired data Data accessed # of I/O ops Resent data
per client per client per client per client

POSIX I/O 2.25 MB 2.25 MB 768 —
Data Sieving I/O 2.25 MB 5.56 MB 2 —
Collective I/O 2.25 MB 5.56 MB 1 4.50 MB
List I/O 2.25 MB 2.25 MB 6 —

I/O processors and the second phase is parallel writes to
the file partitions by the I/O processors. The write case
of ROMIO collective I/O does not use data sieving writes
from the I/O processors to the file system since there is no
file synchronization in PVFS. For a file system that sup-
ports file locking, the second phase of the write case of
ROMIO collective I/O would use data sieving writes.

4 Performance Implications
To show the effect of the ROMIO list I/O optimization,

we ran a series of tests that access noncontiguousdata. Sec-
tion 4.1 discusses our test setup. We tested our optimization
using a tiled reader benchmark, a three-dimensional block
benchmark from the ROMIO testing suite, and a simulation
of the I/O portion of the FLASH code. In each section we
provide a table summarizing the I/O characteristics of the
application for each access method. This information helps
in explaining the performance of the methods. The values
for data accessed per client and resent data per client are
average values across processes.

4.1 Machine Configuration

We ran all of our tests on the Chiba City cluster at Ar-
gonne National Laboratory [5]. The cluster had the follow-
ing configuration at test time. There are 256 nodes each
with dual Pentium III 500 MHz processors, 512 MBytes
of RAM, a 9 GByte Quantum Atlas IV SCSI disk, a 100
Mbits/sec Intel EtherExpress Pro fast-ethernet card oper-
ating in full-duplex mode, and a 64-bit Myrinet card. We
conducted all experiments using fast-ethernet due to some
Myrinet instability at the time of experimentation. The
nodes are currently using Red Hat 7.1 with kernel 2.4.9
compiled for SMP use. Our I/O configuration included 8
PVFS I/O servers with one I/O server doubling as both a
manager and an I/O server. PVFS files were striped with
a stripe size of 16 KBytes. MPICH 1.2.4 was used in all
our testing using hints for list I/O, data sieving and collec-
tive operations. ROMIO was compiled with PVFS version
1.5.6-pre1. All ROMIO data sieving operations and collec-
tive operations were performed using a 4 MByte buffer. All
results are the average of three runs.

4.2 Tile Reader Benchmark

Tiled visualization code is used to study the effective-
ness of commodity based graphics systems in creating
parallel and distributed visualization tools. The amount
of detail in current visualization methods requires more
than a single desktop monitor can resolve. Using two-
dimensional displays to visualize large datasets or real-time
simulation is important for high performance applications.
Our version of the tiled visualization code, the tile reader
benchmark, uses multiple compute nodes, with each com-
pute node taking high-resolution display frames and read-

Figure 4: Tile reader file access pattern. Each processor
is in charge of reading the data from a display file into its
own local display, also known as a tile. This results in a
noncontiguous file access pattern.

ing only the visualization data necessary for its own dis-
play. We use six compute nodes for our testing, which
mimics the display size of the full application. The six
compute nodes are arranged in the 3 x 2 display shown in
Figure 4, each with a resolution of 1024 x 768 with 24-bit
color. In order to hide the merging of display edges, there
is a 270-pixel horizontal overlap and a 128-pixel vertical
overlap. Each frame has a file size of about 10.2 MBytes.
A set of 100 frames is read for a total of 1.02 GBytes.

Table 1 provides a summary of the I/O characteristics
of this benchmark for each method of access. We expect
ROMIO list I/O to perform best with this access pattern be-
cause the noncontiguous file regions are large and there are
only 768 noncontiguous file regions. This means that 768 /
128 = 6 I/O requests per processor, which is not too burden-
some. ROMIO POSIX I/O will have to make all 768 I/O
requests per processor. The data layout is sparse enough
to lessen the performance improvements of data sieving in
ROMIO data sieving I/O or ROMIO collective I/O. Data
sieving ROMIO I/O will perform marginally since only
2.25 MBytes of 5.56 MBytes of the data accessed per pro-
cessor is useful. Collective ROMIO I/O will be able to use
data sieving effectively since no data will be wasted. How-
ever the overhead of the second phase of redistribution will
make it slower than ROMIO data sieving I/O since it must
pass 4.5 MBytes of data to other processors.

We can see in Figure 5 that ROMIO list I/O outper-
forms the other ROMIO I/O methods in both the uncached
and cached read cases. All of the methods perform bet-
ter in the cached case due to getting data from memory on
the I/O servers instead of the disk. While ROMIO collec-
tive I/O views the file access pattern as contiguous from an
aggregate standpoint, the file regions are too large to en-
able it to overcome the overhead of reading data once from
file and then sending the data to the requesting nodes. In
fact, the overhead of file redistribution causes it to fall be-
hind ROMIO data sieving I/O. The overhead of 768 I/O
calls to the file system caused ROMIO POSIX I/O to lag
far behind the other implementations. Other noncontigu-
ous reading benchmarks perform with similar higher per-
formance trends in cached read cases versus uncached read
cases, so we only focus on uncached noncontiguous read
performance in the other noncontiguous read tests.
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Figure 5: Tile reader benchmark results.

Table 2: I/O Characteristics of the ROMIO Three-
Dimensional Block Test

Desired data Data accessed # of I/O ops Resent data
per client per client per client per client

8 Clients
POSIX I/O 103 MB 103 MB 90,000 —
Data Sieving I/O 103 MB 412 MB 103 —
Collective I/O 103 MB 103 MB 26 77.2 MB
List I/O 103 MB 103 MB 704 —
27 Clients
POSIX I/O 30.5 MB 30.5 MB 40,000 —
Data Sieving I/O 30.5 MB 274.7 MB 69 —
Collective I/O 30.5 MB 30.5 MB 8 27.1 MB
List I/O 30.5 MB 30.5 MB 313 —
64 Clients
POSIX I/O 12.9 MB 12.9 MB 22,500 —
Data Sieving I/O 12.9 MB 206.0 MB 52 —
Collective I/O 12.9 MB 12.9 MB 4 12.1 MB
List I/O 12.9 MB 12.9 MB 176 —

4.3 ROMIO Three-Dimensional Block Test

The ROMIO test suite consists of a number of correct-
ness and performance tests. We chose the coll perf.c test
from this suite to compare our methods of noncontiguous
data access. The coll perf.c test measures the I/O band-
width for both reading and writing to a file with a file ac-
cess pattern of a three-dimensional block-distributed array.
The three-dimensional array, shown graphically in Figure
6, has dimensions 600 x 600 x 600 with an element size of
an integer (4 bytes).
Table 2 summarizes the I/O characteristics of this test

for the four I/O methods and three numbers of processes.
Due to the three-dimensional block access pattern, we ex-
pected that increasing the number of processors would have
a large effect on the performance. For example when we
used 8 processors, data sieving operations would waste 3/4
of the data accessed, roughly 309 Mbytes. When we used
64 processors, data sieving operations would waste 15/16
of the data accessed, roughly 193.1 MBytes. When consid-
ering ROMIO collective I/O, no file data would be wasted,
but the redistribution size in both the read and write cases
would be the same as the wasted file data in ROMIO data
sieving I/O. When using 8 or 64 processors, 3/4 or 15/16,
respectively, of the data accessed by I/O processors would
be redistributed to other processors. ROMIO POSIX I/O

Figure 6: Three-dimensional block test access pattern. The
access pattern for 8, 27, and 64 processors is shown in (a),
(b), and (c) respectively.

Table 3: I/O Characteristics of the FLASH I/O Simulation
(n is the # of clients)

Desired data Data accessed # of I/O ops Resent data
per client per client per client per client

POSIX I/O 7.50 MB 7.50 MB 983,040 —
Data Sieving I/O — — — —
Collective I/O 7.50 MB 7.50 MB 2 7.5 MB *
List I/O 7.50 MB 7.50 MB 7,680 —

will have to face 90,000 accesses per processor with 8 pro-
cessors, 40,000 access per processor with 27 processors,
and 22,500 access with 64 processors. ROMIO list I/O
faces a reduced number of accesses versus ROMIO POSIX
I/O, but must contend with many more I/O operations per
client versus data sieving methods.
Figure 7 shows the results of the three-dimensional

block test. In the write case, we see ROMIO list I/O take a
big lead over the other methods and then drop significantly
with 27 processors and 64 processes. We can attribute this
slowdown to a smaller contiguous file region size and an
increased number of system-wide I/O requests to the I/O
servers. ROMIO POSIX I/O performs very poorly due to
even more I/O requests than ROMIO list I/O in all cases.
ROMIO collective I/O sees some gains in this test with
more processors since it performs large contigous writes
with the assigned I/O processors instead of small noncon-
tiguous writes like the other methods. In the read case,
ROMIO list I/O results improve from 8 to 27 processors
due to having more clients outweighing the effect of hav-
ing smaller accesses. However, at 64 processors, the over-
head of increased I/O requests and smaller file regions has
lessened performance. ROMIO POSIX I/O performsworse
with an increased number of processors due to 128 times
more I/O requests than ROMIO list I/O. ROMIO data siev-
ing I/O also performs worse with more processors since
it accesses 206 MBytes per client while using only 12.9
MBytes. ROMIO collective I/O suffers from the heavy re-
distribution cost.

4.4 FLASH I/O Simulation

The FLASH code is an adaptive mesh refinement ap-
plication that solves fully compressible, reactive hydrody-
namic equations, developed mainly for the study of nu-
clear flashes on neutron stars and white dwarfs [9]. The
I/O performance for FLASH determines how often check-
pointing may be performed, so I/O performance is criti-
cal. The actual FLASH code uses HDF5 for writing check-
points, but the organization of variables in the file is the
same in our simulation. The element data in every block on
every processor is written to file by using noncontiguous
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Figure 7: Three-dimensional block test results.

MPI Datatypes. The access pattern of the FLASH code
is noncontiguous both in memory and in file, making it
a challenging application for parallel I/O systems. The
FLASH memory datatype, viewable in Figure 8, consists
of 80 FLASH three-dimensional blocks, or cells in the re-
fined mesh, on each processor. Every block contains an
inner data block surrounded by guard cells. Each of these
data elements has 24 variables associated with it. Every
processor writes these blocks to a file in a manner such that
the file appears as the data for variable 0, then the data for
variable 1, all the way up to variable 23 as shown in Figure
9. Within each variable in file, there exist 80 blocks, each of
these blocks containing all the FLASH blocks from every
processor. Since every processor writes 80 FLASH blocks
to file, as we increase the number of clients, the dataset size
increases linearly as well. Every processor adds 7 MBytes
to the file, so the dataset ranges between 14 MBytes (2
clients) to 448 MBytes (64 clients).
Table 3 summarizes the I/O characteristics of this bench-

mark for the access methods tested, with n referring to the
number of compute processors (or clients). Note that be-
cause this is a write benchmark and PVFS does not have file
locking, the data sieving method was not tested. In our test-
ing we vary the number of clients from 2 to 64. Each con-
tiguous memory region is the size of a double (8 bytes). In
file, however, the contiguous regions are (8 x-elements)*(8
y-elements)*(8 z-elements)*(sizeofdouble) = 4096 bytes.
The FLASH I/O code is worst for the ROMIO POSIX I/O
approach since the noncontiguous file region access pattern
is sparse. The number of I/O requests for ROMIO default
I/O = (80 blocks)*(8 x-elements)*(8 y-elements)*(8 z-
elements)*(24 variables) = 983,040 I/O calls per processor.
Our implementation of ROMIO list I/O can do a little bet-
ter since ROMIO list I/O can describe noncontiguous file
regions in a single I/O calls. However, since our maximum
limit of file regions was set at 128 for this test, 983,040
/ 128 = 7,680 I/O calls per processor are still required.
The FLASH I/O benchmark presents a good opportunity to
use ROMIO collective I/O since the aggregate view of the
file is actually a contiguous region of file. ROMIO collec-
tive I/O only needs to perform I/O calls = (Aggregate data
size)/((number of procesors)*(Buffer size)) = (7 MBytes *
N procs)/(N procs)*(4 Mbytes) = 7/4 rounded up to 2 I/O
calls per processor. While, of the data must be redis-
tributed, the savings in I/O calls is significant enough to
overcome the redistribution overhead. We expect ROMIO
collective I/O to perform best in this benchmark.

Figure 10 shows that ROMIO collective I/O works more
efficiently than the other ROMIO I/O methods for numer-
ous noncontiguous file regions that appear contiguous from
a global standpoint. ROMIO POSIX I/O suffers from the
immense overhead of 983,040 I/O calls per processor while
list I/O does roughly two magnitudes better due to only
having 7,680 I/O calls per processor. As we increase the
number of processors, the dataset size increases. We see
that both ROMIO POSIX I/O and ROMIO list I/O increase
bandwidth with more processors, but ROMIO collective
I/O starts to fall with larger dataset sizes between 16 to
32 nodes. For the two processor case of 14 MBytes, in
ROMIO collective I/O, 4 contiguous writes could cover
the entire file, but at 448 MBytes, 112 contiguous writes
are necessary. Even though it is only 2 contiguous writes
per processor in all cases, redistribution becomes more and
more expensive as we increase the aggregate data size. For
example, with 64 processors, only 1/64 of the data read
from the file system is used by the processor doing I/O, the
other 63/64, 12.1 MBytes is sent to other processors.

5 Related Work
Several vendors of MPI-IO implement MPI read and

write calls in variousways to improve performance. For ex-
ample, the MPI-IO implementation on GPFS uses the data-
shipping technique and controlled prefetching to reduce the
number of file I/O operations per MPI-IO read/write calls
[14]. When using controlled prefetching, GPFS analyzes
the predefined pattern of I/O requests to find the lower and
upper bounds of the byte range, which is essentially a data
sieving operation, since the file is read into memory at an
I/O agent and then data movement is performed. While this
strategy can result in good performance for certain data ac-
cess patterns, there are several problems with prefetching.
For file accesses that are logically distant (for example an
access that spans an entire file), byte range locking grows
exceptionally large and slow, even if the data movement
consists only of a byte at the beginning of the lock and a
byte at the end of the lock. Also, in the write case, file lock-
ing slows performance considerably in many cases. The
user must choose between dealing with these problems or
turning off prefetching and having I/O agents send multiple
requests for noncontiguous data.
The High Performance Storage System (HPSS) is com-

mercial software for hierarchical storage management and
services in large-scale storage [20]. HPSS has support
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Figure 8: FLASH memory datatype. Each computing processor contains 80 blocks, so as we scale up the number of com-
puting processors, we linearly increase the dataset size.

Figure 9: FLASH file datatype. This figure describes the
hierarchy of the file datatype. At the highest level of the
hierarchy, variables are contiguous. Within every variable,
there are all the FLASH blocks from all the processors.

for MPI-IO and implements MPI-IO read/write calls us-
ing several optimizations including asynchronous opera-
tion, grouping accesses on the same storage, grouping ac-
cesses on the same processor and coalescing of small ac-
cesses [11]. Unfortunately, since HPSS is commercial soft-
ware, little documentation is available on the implementa-
tion.

6 Conclusions and Future Work

ROMIO list I/O is a significant implementation for non-
contiguous data access. We have seen the performance
improvements in both the tile reader benchmark as well
as the noncontiguous ROMIO benchmark. In many non-
contiguous cases, ROMIO list I/O can outperform current
ROMIO methods, but there are cases, such as the FLASH
I/O benchmark in Section 4.4 where the number of noncon-
tiguous file regions grows too large for ROMIO list I/O to
reduce linearly.
While the list I/O interface is a major step in support

for noncontiguous accesses, it is not optimal. Particularly
in the case of MPI-IO, noncontiguous accesses often have
regular patterns in the file, and these patterns are described
concisely in the datatypes passed to the MPI I/O call. The
list I/O interface, as described here, loses these regular pat-
terns, instead flattening them into potentially large lists of
contiguous regions. One area of future study is in how
these descriptions of regular patterns can be retained and
passed directly to the parallel file system. This capabil-
ity can have a significant impact on the size of the I/O re-
quest, which can be extremely important in cases where
many noncontiguous regions each of a very small size are
being accessed.
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